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a b s t r a c t

Using the permeability analogue of the diffusion and partitioning processes occurring in a chromato-
graphic column, the different Effective Medium Theory (EMT) models that exist in literature for the
electrical and thermal conductivity have been transformed into expressions that accurately predict the
B-term band broadening in chromatographic columns. The expressions are written in such a form that
they hold for both fully porous and porous-shell particles, and both spherical and cylindrical particles are
considered. Mutually comparing the established EMT-expressions, it has been found that the most basic
variant, i.e., the Maxwell-based expression, is already accurate to within 5% for the typical conditions
encountered in liquid phase chromatography, independently of the exact microscopic morphology of
the packing. For most typical values of the intra-particle diffusion rate and the species retention factors,
it is even accurate to within 1%. If even higher accuracies are needed, more elaborate EMT-expressions
are available. The modelling accuracy of all explicit EMT-expressions is much better than the residence
time weighted (RTW) B-term expressions that have been used up to now in the field of chromatogra-
phy, where the error is typically on the order of 10% and more. The EMT-models have also been used to
establish expressions for the obstruction and tortuosity factor in packings of non-porous particles. The
EMT has also been applied to the meso-porous zone only, yielding an expression for the intra-particle
diffusion coefficient that can be used without having to specify any obstruction factor. It has also been
shown that the EMT also provides a very simple but exact expression to represent the way in which

the solid core obstructs the effective intra-particle diffusion in the case of porous-shell particles. This
obstruction factor is given by �part = 2/(2 + �3) for spherical particles and �part = 1/(1 + �3) for cylinders.
Back-transforming the obtained expressions, a set of simple explicit expressions has been obtained that
allow to directly obtain the intra-particle diffusion coefficient (Dpart) from peak parking or B-term con-
stant measurements. Using these expressions, it could be demonstrated that the traditionally employed
RTW-model yields Dpart-values that display an erroneous retention factor dependency, even in cases

pear
where the RTW-model ap

. Introduction

In the field of chromatography, the contribution of the longitu-
inal diffusion (usually referred to as B-term band broadening) to
he total band broadening is traditionally written as [1]:
B = 2Deff

u0
(1 + k′) (1)
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s to be able to closely fit the peak parking measurements.
© 2010 Elsevier B.V. All rights reserved.

Switching to dimensionless variables, and putting:

�eff = Deff

Dm
(2)

Eq. (1) becomes:

hB = B

�0
= 2�eff

�0
(1 + k′) (3)

with

B = 2�eff(1 + k′) (4)
Thus far, the effective longitudinal diffusion has nearly always
been described using the parallel-zone or residence time weighted
(RTW) model introduced by Knox [1], Stout and De Stefano [2] and
Giddings [3]. In 2008, our group [4,5] however showed that the
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onventionally used residence time weighted model (RTW-model)
s intrinsically incorrect and can even violate the fundamental dif-
usion limits. It was also pointed out that it should be possible to
btain much more accurate representations of the effective longi-
udinal diffusion using the Effective Medium Theory (EMT), as is
one in many other fields of science and technology where the
MT is fully accepted as a powerful approach to, for example,
alculate effective optical transmission coefficients, elasticity mod-
li, and heat transfer and diffusion coefficients of binary media
4,6,7]. One of the EMT-expressions, i.e., the one established by

axwell, is widely accepted in the field of chemical engineering
o represent the diffusion in packed bed columns [8]. In the field
f chromatography, the EMT has already been used to measure the
ffective tortuosity in suspensions and packings of porous particles,
s well as inside the particles [9]. In [4,5], the EMT has been used
o model the effective diffusion under chromatographic conditions
comprising both diffusion and preferential phase distribution) in
eriodic arrays of cylinders and to study the stationary phase dif-
usion coefficient in porous particles. Very recently, the possibility
o use the EMT to predict the longitudinal diffusion has also been
ecognized by Gritti et al. [10,11]. They however indicate that the
ifference between RTW-model and the EMT-model they used, is
oo small to reject either of them.

The present study aims at resolving this debate. First, it needs
o be considered that a variety of EMT-models exist, with a vary-
ng degree of accuracy. Globally, the EMT-models can be divided
n three subdivisions: explicit models (Maxwell-type approxima-
ions), self-consistent models (Bruggeman- and Landauer-models)
nd differential medium approximation models [6]. The paper that
nitiated the explicit EMT-modelling work is undoubtedly that of

axwell [12], already dating back from 1873. His work has later
een extended by, amongst others, McPhedran and McKenzie [13],
angani and Acrivos [14], Torquato [15] and Cheng and Torquato
16]. Through the course of history, these authors have established
he explicit models for the effective conductivity in periodic arrays
r random packings of conducting spheres in a mathematically rig-
rous way. Whereas the original Maxwell-expression is only exact
or dilute suspensions of spheres, the more advanced expressions
stablished by his successors also take near-neighbour interactions
nto account.

Most EMT-expressions have originally been established to
alculate the effective thermal and electrical conduction of a
inary medium. For reasons of mathematical analogy, the EMT-
xpressions also hold for properties such as the dielectric constant,
he magnetic permeability and the diffusion coefficient [6]. None of
hese processes however involve the occurrence of a partitioning
r preferential solubility effect between the two phases, whereas
his is clearly the case when considering the diffusive process in a
hromatographic column. As such the latter problem bears a per-
ect similarity with the permeation of analytes through composite

edia and membranes [17]. Recognizing that the correct driving
orce for the diffusion in the presence of a preferential solubility is
he gradient in chemical potential and not the gradient in concen-
ration, Davis [7] has shown that the correct property that obeys the
MT-rules is the permeability and not the diffusivity. Up to now,
nly the Maxwell- and the Landauer–Davis model have been for-
ulated in terms of the effective permeability problem [4,18], but
ost of the EMT-models that have a higher order accuracy have

ot been adapted yet.
In what follows, we have therefore transformed all relevant

xplicit and implicit EMT-expressions for the effective conductiv-

ty in binary media that can be found in literature into expressions
or the Deff-factor and the B-term constant in chromatographic
olumns. We also considered the expression derived by Hashin
nd Shtrikman [19] who extended the realm of EMT-expressions to
oated-spheres systems (i.e., to ternary media consisting of a pack-
togr. A 1218 (2011) 32–45 33

ing or suspension of spheres with a core and a concentric shell with
a different conductivity). Obviously, their solution directly opens
the road to the treatment of the case of porous-shell particles.

The EMT-expressions for the conductivity in 2D ordered and
disordered cylinder packings are considered as well, because they
allow to predict the B-term constant in so-called COMOSS or micro-
pillar array columns (�PAC’s) [20–22]. To some approximation,
cylinders can also be used to represent the skeleton of mono-
lithic columns [23]. In part II of the present study, the expressions
obtained in this part are validated by comparing them against a set
of highly accurate numerical calculations.

Subsequently, the different obtained B-term constant expres-
sions have been mutually compared for their general accuracy and
their sensitivity to the exact geometry of the packing (Section 3).
In addition, we also established the inverse expressions, allowing
to accurately extract the value of the intra-particle diffusion coeffi-
cient from a measured value of the effective longitudinal diffusion
coefficient (Section 5).

2. Formulation of the EMT-expressions in terms of the
macroscopic chromatographic parameters

To apply the EMT to the problem of diffusion in a chromato-
graphic column, the column first needs to be represented as a binary
medium consisting of two zones, zone1 (=interstitial void, volumet-
ric fraction εe) and zone2 (=particles, volumetric fraction 1 − εe),
each with uniform but distinct physicochemical properties (Fig. 1a).

To subsequently transform the literature EMT-expressions into
expressions for the effective permeability problem, and from
thereon to expressions for the effective diffusivity, the approach
adopted in [4] can again be used. In this approach, one distinguishes
between the permeability Ppart of the particle zone and the per-
meability Pm of the mobile zone (i.e., the interstitial void zone),
each defined as the product of the solubility S and the diffusion
coefficient D experienced by the analytes in the given zone:

Pm = DmSm and Ppart = DpartSpart (5)

It should be noticed that the concept “solubility” [18] is used here
as a synonym for a partition coefficient describing the equilibrium
partition with respect to a neutral medium with solubility S = 1.

Subsequently exchanging conductivities with permeabilities in
the EMT-expressions for the effective conductivity then directly
provide an expression for Peff, the effective permeability of the
binary medium. In analogy with Eq. (5), this Peff can also be
expressed as the product of the effective diffusion coefficient Deff
and the effective solubility Seff [7,17]:

Peff = DeffSeff (6)

with the effective solubility Seff being defined as:

Seff = �mSm + �partSpart (7)

Taking the solubility in the mobile phase as unity (Sm = 1), the
particle-based solubility Spart appearing in Eqs. (5) and (7) is simply
equal to the whole-particle based equilibrium distribution constant
Kpart defined in the Supplementary material (SM):

K = Spart = mpart,eq/Vpart (8)
part Sm Cm,eq

This equilibrium constant expresses the relation between the total
mass (or moles) of species present in the particle in equilibrium
with that present in the interstitial void volume.
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ig. 1. (a) Schematic representation of a packed bed column consisting of porous pa
light continuous region). Trajectory (1) and (2) respectively represent a purely para
c, d) System wherein same amount of meso-porous material as in (a) is distributed

With the above definitions and conventions, the �- and S-
arameters appearing in Eqs. (5)–(8) can be written as:

�1 = εe

�part = 1 − εe

S1 = 1
Spart = Kpart

(9)

s shown in the SM, Kpart can be directly linked to either the zone
etention factor k′′ (k1 in [10] or ı1 in [24]) or to the phase retention
actor k′ by the generally valid expression:

part = εe

1 − εe
k′′ = εT

1 − εe
(1 + k′) − εe

1 − εe
(10)

As defined by Knox [25], the zone retention factor k′′ relates
he analyte retention time to the residence time of a marker that
nly occupies the interstitial void and does not enter the particles,
hereas the phase retention factor k′ relates the analyte retention

ime to the residence time of the unretained marker (t0-time). Both
uantities are related via Eqs. (S-4) or (S-13) of the SM.

Before proceeding, it is also convenient to introduce ˛part as
he ratio of the permeability of the particle zone over that of the
nterstitial zone, further referred to as the “relative particle perme-
bility”:

part ≡ Ppart

Pm
= KpartDpart

Dm
(11)

sing Eqs. (10) and (11), ˛part can also be conveniently rewritten
s a function of k′ and k′′:
part = εek′′

1 − εe
· Dpart

Dm
= (1 + k′)εT − εe

1 − εe
· Dpart

Dm
(12)

his ˛part is the equivalent of the thermal or electrical conductiv-
ty appearing in the traditional literature EMT-expressions, and can
ence readily replace the latter when treating an effective perme-
bility problem.
s (dark regions) embedded in the mobile phase liquid filling up the interstitial void
nd purely serially-connected diffusion path. (b) Zoom-in of a porous-shell particle.
a purely serial orientation and (d) a purely parallel orientation.

2.1. Explicit models (spherical particles)

Traditionally, the explicit EMT-expressions are simplified by
introducing the parameter ˇ1, usually referred to as the polariz-
ability constant [15], and depending exclusively on ˛part:

ˇ1 = ˛part − 1
˛part + 2

(13)

2.1.1. Maxwell-based expression
Using Eq. (13), and taking the conductivity of the medium sur-

rounding the particles as �m, the basic Maxwell-expression for the
effective thermal or electrical conductivity of a suspension of parti-
cles embedded in a uniform medium is typically written as [15,26]:

�eff

�m
= 1 + 2ˇ1(1 − εe)

1 − ˇ1(1 − εe)
(14)

Replacing now the thermal or electrical conductivity � by the per-
meability P, and using the relation between Peff and Deff given by
Eq. (6), it is found that:

Deff

Dm
= 1

Seff
· Peff

Dm
= 1

Seff
· 1 + 2ˇ1(1 − εe)

1 − ˇ1(1 − εe)
, (15)

which, upon using the expressions for B, �eff and Seff given in Eqs.
(2), (4) and in Eq. (S-20) of the SM, can be written as:

B = 2�eff(1 + k′) = 2
εT

· 1 + 2ˇ1(1 − εe)
1 − ˇ1(1 − εe)

(16)

2.1.2. Rayleigh-based expression
One of the assumptions underlying the Maxwell-model is that

of a dilute suspension, wherein the conductivity in a given particle
is not influenced by the conductivity in the neighbouring parti-

cles. To take these close-neighbour interactions into account, some
additional information about the local packing geometry needs to
be included in the calculations. This was first done by Rayleigh
[27], who considered the case of a face centered cubic (fcc) pack-
ings of spheres (see Fig. 2a) and succeeded in finding the higher
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rder terms needed in the non-dilute suspension or packing case.
sing the same transformations as those used to obtain Eq. (16),
is solution can be written as:

= 2�eff(1 + k′)

= 2
εT

(
1 − 3(1 − εe)[− 1

ˇ1
+ (1 − εe) − 1.569 · 1 − ˛part

4 + 3˛part
· (1 − εe)10/3 + · · ·]

−1)
(17)

.1.3. Highest order accuracy solutions
Eq. (17) contains only one higher order term and there has been

erious doubt about its possibility to converge to the exact solution
14]. It was not until the availability of a sufficient computational
ower and the work of McPhedran and McKenzie [13], Sangani and
crivos [14], and finally Cheng and Torquato [16,26] that highly
ccurate explicit expression for the three existing types of ordered
phere packings (see Fig. 2: simple cubic (sc), body centered cubic
bcc) and face centered cubic (fcc) packing) were obtained. The
xpression established by Cheng and Torquato [16] for example
as a 9th order accuracy in the particle fraction [26], and can be
ritten as:

= 2�eff(1 + k′) = 2
εT

(
1 − 3 · (1 − εe)

�

)
(18a)

ith
� = −ˇ−1

1 + (1 − εe) + b1ˇ3(1 − εe)10/3 + b2ˇ5(1 − εe)14/3 + b3ˇ2
3(1 − εe)17/3

+ b4ˇ7(1 − εe)6 + b5ˇ3ˇ5(1 − εe)7 + b6ˇ9(1 − εe)22/3 (18b)
nd

i = ˛part − 1
˛part + (i + 1)/i

(18c)
simple cubic (sc) sphere packing. (d) Unit cell of an fcc-packing at the close-packing

The numerical coefficients for the bi-coefficients appearing in Eq.
(18b) are given in Table 1. The value of these coefficients depends
upon the packing geometry and is different for the fcc-, bcc- and
sc-case.

2.1.4. Torquato-approximations
Eq. (18) is accurate up to 9th order [26], but is very elaborate

and hence difficult to use in practice. Fortunately, it was rigorously
demonstrated by Torquato [15] that a highly accurate approxi-
mation to Eq. (18) could be obtained by truncating the solution
after the 3rd order term and introducing the so-called three-point
parameter 	2:

B = 2�eff(1 + k′) = 2
εT

· 1 + 2ˇ1(1 − εe) − 2εe
2ˇ1
2

1 − ˇ1(1 − εe) − 2εe
2ˇ1
2

(19a)

with 	2 a given function of the particle fraction (1 − εe) [28]:


2 = a1(1 − εe) exp(a2(1 − εe)) (19b)

A great asset of Eq. (19a) is that it also holds for a random pack-
ing of spheres, provided the appropriate ai-coefficients are being
used. These are summarized in Table 1 for the fcc-, bcc- and sc-
case, as well as for random packing case. For a random packing
with εe = 0.4, Eq. (19b) predicts a value of 	2 = 0.11. On the other
hand, Miller and Torquato [29] have obtained that 	2 = 0.13. These
values lie relatively close to each other, and anyhow do not pro-
duce a significant difference when applied in Eq. (19a) under most

relevant conditions.

2.1.5. The Jeffrey- and Hashin-solution
One final EMT-expression considered here is linked to the work

of Jeffrey [30] and that of Hashin [31], who have also solved the
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Table 1
Values for the bi-coefficients appearing in the exact Cheng and Torquato-expression (Eq. (18b)) and the ai-coefficients appearing in the approximate Torquato-expression
for spherical particles and cylindrical pillars (Eq. (19b)).

Simple cubic Body-centered cubic Face-centered cubic Random

a: Spherical particles
b1 1.30472 0.12930 0.07529 /
b2 0.07232 0.25696 0.24195 /
b3 −0.52895 −0.09881 0.05583 /
b4 0.15256 0.01313 0.02311 /
b5 −0.30667 0.05338 −0.05244 /
b6 0.01045 0.00562 9.16 × 10−7 /
a1 7.181 × 10−3 1.256 × 10−3 8.670 × 10−4 2.114 × 10−1

a2 7.816 7.759 7.962 −2.382 × 10−1

Square Equilateral triangular Random
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b: Cylindrical pillars
a1 1.447 × 10−3 2.151 × 10−5

a2 7.871 1.082 × 101

andom packed bed problem and have established a solution that
s accurate up to order 3 [16]. Their expression can be rewritten as:

= 2�eff(1 + k′) = 2
εT

[
1 + 3ˇ1(1 − εe) + 3ˇ2

1(1 − εe)2(1 + 2ıˇ1)
]

(20)

ith ı a tabulated fitting factor (see Table 1 of [30]) that varies
nly very weakly with ˛part (ı = 0.22 at ˛part = 0; ı = 0.21 at ˛part = 1;
= 0.25 at ˛part = + ∞).

.2. Implicit models

The most widespread used implicit model is the Landauer–Davis
odel [7,17,32]. In terms of the relative particle permeability ˛part,

nd using the same transformations as in the previous section, the
andauer–Davis expression can be written as [4]:

= 2�eff(1 + k′) = 2˛part

εT

[
A +

(
A2 + 2

z − 2
· 1

˛part

)1/2
]

(21a)

ith

=
(

(z/2)εe − 1
)

˛−1
part +

(
(z/2)(1 − εe) − 1

)
z − 2

(21b)

n this expression, the nearest neighbour interactions are repre-
ented by the so-called coordination number z. Often this number
s taken as 6, but there is clear evidence that z can vary with the
raction of the void volume ε [17] and even with the intra-particle
iffusion coefficient [5]. The reader should note that Eqs. (21a),
21b), originally introduced into the field in [4], are identical to the
xpressions used very recently in [10]. The equivalence can easily
e checked by noting that εe(1 + k′′) = εT(1 + k′) and by putting z = 6.

Implicit (or self-consistent) models however have an inherent
eakness because they do not include any specific information

egarding the spatial distribution of the included regions (spheres
n the present case) [6]. Other implicit models, such as the differ-
ntial effective-medium model first introduced by Bruggeman [33]
re therefore not considered here.

.3. Upper and lower limit expressions and the residence time
eighted (RTW) model

Before proceeding, it is important to realize that every valid solu-

ion to the EMT should be bound [6,34] by the parallel-connection
ase (volume weighted-average), representing the upper perme-
bility bound:

eff = �mPm + �partPpart (22)
3.349 × 10−1

−1.926 × 10−1

and the series-connection case (harmonic average), representing
the lower permeability bound:

1
Peff

= �m

Pm
+ �part

Ppart
(23)

Applying the same transformation as in the two previous sections,
Eqs. (22) and (23) become:

B = 2�eff(1 + k′)

= 2
εe + (1 − εe)˛part

εT
(parallel-connection of resistances) (24)

B = 2�eff(1 + k′)

= 2
εT

· ˛part

εe˛part + 1 − εe
(series-connection of resistances) (25)

In Section 3, we will compare the EMT-expressions established in
Sections 2.1 and 2.2 with these bounds, as well as with the tradi-
tionally employed parallel-zone or residence time weighted (RTW)
model, used in nearly all studies of the B-term diffusion [1,2,35,36],
and also consistently used in nearly all studies trying to measure
the stationary phase diffusion coefficient �sDs/Dm [36,37]. Using
the same notation as in Sections 2.1 and 2.2, this RTW-model can
be written as:

BRTW = 2�eff,RTW(1 + k′) = 2
εe�e + (1 − εe)˛part

εT
(26)

The reader will note that Eq. (26) is very similar to Eq. (24),
except for the �e-factor that is now appearing in the first term of
the numerator. As such, the RTW-model can also be considered as
a parallel-zone model, but with an empirical modification to find
the correct B-term constant when the analytes only diffuse in the
interstitial void space. Using Eqs. (2) and (4) and Eq. (S-18a) from
the SM, Eq. (26) can also be reformulated into a form that can more
easily be identified with the expressions for �eff and Deff used in
literature [1,2,24,36,38,39]:

�eff,RTW = Deff

Dm
= εe�e + (1 − εe)˛part

εT(1 + k′)
= εe�e + (1 − εe)˛part

εe(1 + k′′)

= �e + k′′Dpart

1 + k′′ (27)

For this purpose, it is also most convenient to replace ˛part by its
relation to �mp and �Ds/Dm (see Section 4.1).
2.4. Special case of cylinders

EMT-expressions have also been established for ordered and
random cylinder packings [6]. The resulting expressions are very
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Table 2
Expressions for �eff and B-term constant for the case of non-porous spheres and cylinders.

Spheres Cylinders

Maxwell �np = �e = 1
�2 = 2

3−εe
�np = �e = 1

�2 = 1
2−εe

Rayleigh �np = �e = 1
�2 = 1

εe

(
1 − 3(1−εe)

3−ε−0.392(1−εe)10/3

)
Cheng and Torquato �np = �e = 1

�2 = 1
εe

(
1 − 3(1−εe)

�

)
with (bi-constants given in Table 1a):

� = 3 − εe − 3
4

b1(1 − εe)10/3 − 5
6

b2(1 − εe)14/3 + 9
16

b3(1 − εe)17/3

− 7
8

b4(1 − εe)6 + 15
24

b5(1 − εe)7 − 9
10

b6(1 − εe)22/3

Torquato �np = �e = 1
�2 = 2−
2

3−εe(1+
2) �np = �e = 1
�2 = 1−
2

2−εe(1+
2)

+ 0.7

s
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s
t

ˇ
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g
f

ˇ

Landauer–Davis �np = �e = 1
�2 = z−2/εe

z−2

Hashin �np = �e = 1
�2 = 1

εe

(
−0.5 + 1.5εe

imilar to those for spherical particles, except for the value of some
f the numerical constants appearing in the expressions. Using the
ame transformations as used in Section 2.1, the cylinder variant of
he Maxwell-expression can be written as:

1 = ˛part − 1
˛part + 1

, (28)

nd

= 2�eff(1 + k′) = 2
εT

· 1 + ˇ1(1 − εe)
1 − ˇ1(1 − εe)

(29)

imilar to the higher order extension that was obtained by Rayleigh
or the spherical particle case, Barrer obtained an equivalent
xpression higher order expression for cylinders [4,17]. Again using
he same approach as in Section 2.1, this can be written as:

= 2�eff(1 + k′)

= 2
εT

[
1 + 2 (1 − εe)

[
ˇ−1

1 − (1 − εe) + 0.3ˇ1(1 − εe)4

+ 0.13ˇ1(1 − εe)8
]−1

]
(30)

he high accuracy of the Barrer-model was already demonstrated
n [4], where the model predictions coincided exactly with a set of
umerically computed diffusion data in 2-D periodic arrays of fully
orous cylinders.

The approximate Torquato-expression (Eq. (19a)) has a cylin-
er packing variant as well [15], which after adapting it to the
ermeability problem case, can be written as:

= 2�eff(1 + k′) = 2
εT

· 1 + ˇ1(1 − εe) − εe
2ˇ1
2

1 − ˇ1(1 − εe) − εe
2ˇ1
2

(31)

imilar to the difference between the cylinder and the sphere vari-
nt of the Maxwell-expression, the effect of the geometry here
lso only involves some minor changes in the numerical constants
ppearing in the expression. Using Eq. (31), care needs to be taken
hat also the appropriate ai-constants appearing in the expression
or the 	2-coefficient are used (see Table 1b).

.5. Special case of non-porous particles

For the special case of non-porous particles, the expressions
iven in Section 2.1 greatly simplify. Since ˛ = 0 in this case, it
part

ollows directly that:

= −1
2

(spherical particles) and ˇ = −1 (cylindrical pillars)

(32)
5(1 − εe)2
(

1 − ı
))

As a consequence, the general EMT-expressions given in Eqs.
(16)–(21) considerably simplify. The resulting expressions are
given in Table 2. Instead of relating them to the B-term constant
as was done in Section 2.1, it was preferred to write the expres-
sions in Table 2 in a form that directly yields �np. The subscript
“np” is used to denote that the solution relates to a packing of non-
porous particles (in which case we put �eff = �np). The �np-format
has been preferred because one of the main applications of the
non-porous particle case is the calculation of the obstruction fac-
tor inside the meso-porous zone of the particles. It is namely often
assumed that the intra-particle obstruction factor can be calculated
by representing the meso-porous zone as a packing of non-porous
nano-spheres.

In this case, the different EMT-models can be used to predict
the obstruction factor induced by the tortuosity of the pore space
(�np). In many literature references, and also in the field of chemical
engineering, �np is often also expressed as the meso-pore tortuosity
� , via the well established identity [9,38]:

�np = 1
�2

(33)

At this point, one should note that the “2” in the exponent
for � is omitted in some literature (e.g. [8,9]). This difference in
notation has grown through the years, but has no mathematical
consequences as it is only a matter of notation and definition.

In general, the diffusion in the meso-pore space is not only
determined by its tortuosity, but also by the frequent collisions the
analyte molecules make with the pore wall. To express this, the so-
called diffusion hindrance factor F(�) is often introduced (� is the
ratio of the molecular diameter to the pore diameter and F(�) turns
to unity when � turns to zero). Traditionally, it is then assumed
that the product of tortuosity and hindrance factor yields the true
meso-pore obstruction factor �mp [3,38]:

�mp = �npF(�) = F(�)
�2

(34)

With the aid of the expressions in Table 2, Eq. (34) can now be used
to produce estimates for the meso-pore obstruction factor �mp used
in expressions of the type given by Eq. (44) shown in Section 4.2
further on.

Returning to the column level, the �np-expressions presented in
Table 2 also directly provide a value for the �e-factor appearing in
the RTW-model (Eqs. (26), (27)), because the latter represents the

obstruction factor in the interstitial void volume, and should thus
correspond to the obstruction factor that would be obtained if the
particles were non-porous.

With the above, we can now compare the different EMT-
expressions for �np given in Table 2 with some of the literature
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Fig. 3. Plot of �np = �e = Deff/Dm as a function of the packing density εe for the case
of non-porous particles (˛part = 0) using the expressions given in Section 2.5 and
Table 2 (different model names are indicated on the graph). The data points (� for
fcc, ♦ for bcc and � for sc) have been obtained via the numerical simulation study
presented in part II. Also indicated ( ) are the close-packing limits for the random
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Fig. 4. Variation of Deff/Dm as a function of k′ and k′′ for an fcc-packing with εe = 0.4
and (a) Dpart/Dm = 0.5 and (b) Dpart/Dm = 0.1. Model curves have been obtained via the
Maxwell-based model ( ), via the high-order accuracy Cheng–Torquato

is low than when Dpart is high.
acking and the ordered fcc-, bcc- and sc-packing cases and an experimental data
oint (�) taken from [43]. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of the article.)

orrelations that are being used for �e and 1/�2
pz (Fig. 3)

np = �e = 1
�2

= 1
εe + 1.5(1 − εe)

(35a)

Suzuki and Smith [40])

np = �e = 1
�2

= 1

(1 − 0.5 ln εe)2
(35b)

Comiti and Renaud [41])

np = �e = 1
�2

= εe (35c)

Wakao and Smith [42])
As a reference, the values for �np obtained in the numerical

omputation study presented in part II are given as well. As can
e noted from Fig. 3 (both model curves coincide), and as can also
e checked analytically, the Suzuki–Smith model is in fact iden-
ical to the Maxwell-based expression for �np (expressions: see
able 2). For high values of εe (non-touching spheres), the simple
uzuki–Smith and Maxwell-based expression provide an excellent
pproximation to any possible packing geometry. For smaller εe,
pproaching the closest-packing limit (denoted by ), the influ-
nce of geometry becomes more important, as can be noted from
he fact that the curves representing the highest-order accuracy
olution for the different packing geometries clearly diverge. The
rdered bcc- and fcc-packing remain relatively close to each other,
hile the sc-packing yields more deviating �np-values. This reflects

he fact that the geometries of the fcc- and a bcc-packing are much
ore similar than the sc-packing (see Fig. 2a–c).
As a point of reference, we also added the value of �np = 0.74 that

as recently measured by Miyabe et al. for a packing with εe = 0.43
43]. As can be noted, the agreement is very good and falls well
ithin the range of experimental error margin.

The other two classical literature expressions (dashed and dot-
ed green lines) clearly yield deviating values, most probably
ecause the model is either too simplistic (Wakao–Smith [42])

r because it is based on hydrodynamic calculations (Comiti and
enaud [41]), which are known to produce a different tortuosity
han diffusion calculations (simply because of the different phe-
omena they represent).
solution ( ) and via the RTW-model (Eq. (26)) ( ). The solid data
points (�) have been obtained in the study presented in part II. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of the article.)

3. Characteristics of the different models and their
sensitivity to the bed shape (fully porous case)

Fig. 4 shows how the Deff/Dm-data predicted by the Maxwell-
based expression (Eq. (16)) and by the highest-order accuracy
Cheng–Torquato expression (Eq. (18)) evolve with k′ and k′′ in an
fcc-packing with εe = 0.40 for two different values of the intra-
particle diffusion coefficient Dpart, one corresponding to a typically
high (Dpart/Dm = 0.5) and to a typically low value (Dpart/Dm = 0.1).
The results for two other Dpart/Dm-values (Dpart/Dm = 0.25 and
Dpart/Dm = 0.05) are given in the SM (as well as the results for an fcc-
packing with a different external porosity: εe = 0.35). The solid data
points again represent the values obtained via the computational
study discussed in part II. The curve predicted by the RTW-model
(Eq. (26)) is given as well.

A first observation that can be made from Fig. 4 concerns the
general steepness of the presented Deff-curves, for which it can be
concluded that, the lower the Dpart-value, the steeper the relation
between Deff and the retention factors k′ and k′′. This is in agreement
with one’s physical expectations. A higher retention factor namely
implies that the analytes spend more time in the particles, so that
their effective diffusion is more affected by Dpart. As a consequence,
and since all curves need to depart from the same �e-point at k′′ = 0,
Deff will decrease more sharply with increasing k′ or k′′ when Dpart
Despite its enormous simplicity compared to the other EMT-
models, and despite the dilute suspension assumption it is based
on, it is also striking to note how well the Maxwell-based expres-
sion (red curves in Fig. 4) follows the trend of the highest-order
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Fig. 5. Plot of Deff/Deff,Maxwell (“Maxwell-plot”) for different EMT-models and the
RTW-model for εe = 0.4 and for (a) Dpart/Dm = 0.5 and (b) Dpart/Dm = 0.1. The dif-
ferent curves pertain to the different considered models: Maxwell ( ),
Cheng–Torquato fcc ( ), bcc ( ), sc ( ), Landauer–Davis
z = 6 ( ), z = best fit ( ), Rayleigh ( ), Torquato Ran-
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Fig. 6. Plot of Deff/Deff,Maxwell (“Maxwell-plot”) for different EMT-models for εe = 0.4
and for (a) Dpart/Dm = 0.5 and (b) Dpart/Dm = 0.1. The different curves pertain to the dif-
ferent considered models: Maxwell ( ), Cheng–Torquato fcc ( ),
bcc ( ), sc ( ), Torquato fcc ( ), bcc ( ),
om ( ), the series and parallel limits ( ) and the RTW-model
). (For interpretation of the references to color in this figure legend, the

eader is referred to the web version of the article.)

ccuracy EMT-expressions established by Cheng and Torquato (Eq.
18), black curves). The agreement with the data points of the
omputational fluid dynamics study discussed in part II is also
xcellent. The RTW-model on the other hand completely fails in the
part/Dm = 0.5-case, and also clearly deviates from the true solution

n the Dpart/Dm = 0.1-case. All observations described above also
old for a bcc-packing with εe = 0.40 (data not shown).

To investigate the mutual differences between the different
odels in more detail, and trying to find an explanation for the

xcellent accuracy of the simple Maxwell-expression, it is conve-
ient to represent the Deff-data as a plot of Deff/Deff,Maxwell (see
igs. 5 and 6). This type of plot, further on referred to as the
Maxwell-plot”, is obtained by calculating Deff via any of the expres-
ions established in Sections 2.1 and 2.2 and subsequently dividing
he result by the Deff-value obtained via the Maxwell-expression.
his transforms the curved red lines shown in Fig. 4 into a flat
orizontal line with Deff/Deff,Maxwell = 1. As a consequence, the dif-

erences between the different models are considerably magnified.
To understand the observed trends in Figs. 5 and 6, a key role

s played by the upper and lower bound expressions given by Eqs.
24), (25), and respectively representing the series- (see Fig. 1c) and
he parallel-connection case (see Fig. 1d). According to the EMT, all
hysically possible solutions for Deff should be situated between
hese two limiting diffusion regimes. Intuitively, this can readily
e understood by noting that, in the general case, the diffusion is

omposed out of parallel- as well as serially-connected trajecto-
ies (resp. represented by trajectory 1 and 2 in Fig. 1a). Obviously,
he serially-connected case (Fig. 1c) always produces the lowest
ffective diffusion rate since all diffusing molecules have to suc-
sc ( ), Torquato Random ( ), the series and parallel limits
( ) and Hashin ( ). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)

cessively pass through the rate limiting low diffusion zones (dark
region), whereas in the pure parallel case (Fig. 1d), the analytes
can always follow an unobstructed path in the high diffusion zone
(light regions) which obviously corresponds to the highest possible
effective diffusion rate.

As can be noted from Figs. 5 and 6, all EMT-expressions from
Sections 2.1 and 2.2 clearly obey the upper- and lower bound rule
and are situated between the series- and parallel-connection limit.
The RTW-model on the other hand clearly disobeys this rule, thus
pointing at its physical invalidity. In hindsight, the latter is not sur-
prising, because the RTW-model is based on the (clearly erroneous)
assumption that the low and high diffusion area arranged in purely
parallel running strips, and then empirically corrected with a �e-
factor to ensure that the correct �eff-obstruction factor is obtained
at k′ = 0 or k′′ = 0.

An important characteristic of the upper and lower bound
expressions for the parallel- and series-connection case that can
be noted from Fig. 5 is that they completely diverge in the low and
high retention end of the curves, but converge and actually coin-
cide for some intermediate value of the retention factor. This is
clearly the case in Figs. 5a and 6a (Dpart/Dm = 0.5). In Figs. 5b and 6b
(Dpart/Dm = 0.1) this convergence point is situated at the outmost
right side of the plot. It can however be verified that the curves again
diverge when proceeding further to the right (see also discussion
further on below).
Considering now that all EMT-expressions directly depend on
the relative permeability ˛part, it should be noted that this relative
permeability varies in Figs. 5a and 6a from a value well below unity
(˛part = 0 at k′′ = 0, see Eq. (12)) to a value well above unity (˛part = 6
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f k′′ = 18 and Dpart/Dm = 0.5 and εe = 0.4, see Eq. (12)). Subsequently
quating the expressions for the parallel- and the series-connection
ounds (Eqs. (24), (25)) yields:

series = Bparallel ⇔ εe + (1 − εe)˛part = ˛part

εe˛part + 1 − εe
(36)

It can easily be verified that this equation has one and only one
olution, simply given by ˛part = 1. In other words, the upper and
ower bound solution meet each other when the particles have the
ame permeability as the surrounding medium, in full agreement
ith one’s physical expectations. Since the ˛part = 1-condition cor-

esponds to the case wherein the dark and light regions in Fig. 1a
nd c–d have the same permeability, it should indeed not make
ny difference whether the dark regions are aligned in parallel or
n series or are arranged as an array of spherical inclusions. In terms
f the particle-based retention equilibrium constant Kpart, it can be
oted from Eq. (11) that the ˛part = 1-condition corresponds to the
ase wherein Kpart has just achieved the right value to make the
roduct of Kpart and Dpart exactly equal to Dm. In general terms, the
bove can thus be summarized as:

ffective permeability independent of geometry ⇔ ˛part = 1 (37)

or the parameter values considered in Figs. 5b and 6b
Dpart/Dm = 0.1), the ˛part = 1-condition is only achieved at k′′ = 15,
ence explaining why the convergence point is situated so far to
he right.

With the above we can now better understand the general
rends observed in Figs. 5 and 6 (and also those in Figs. S-2 to S-
of the SM). Taking the exact Cheng–Torquato model for random
acked beds as the reference (thick black line), because this is
y far the geometry with the highest practical relevance, it can
learly be noted that the two different considered Landauer–Davis
xpressions (one with z = 6 and one with z = best-fit value) deviate
ignificantly from the exact Cheng–Torquato solution. Consider-
ng the assumptions underlying the Landauer–Davis (LD) model,
his should not come as a surprise. Implicit or self-symmetrical

odels such as the LD-model namely lack any direct relation to
he geometry of the bed, and treat the column as a symmetrical
inary medium [6]. The latter fact, implying that the LD-model

s based on the assumption that the low diffusivity in the parti-
le zone and the high diffusivity in the interstitial void zone are
nterchangeable, is clearly in conflict with the physical reality. The
D-model with z = 6 obviously fits less well than the one with the
est-fit z-value. However, the better fit of the latter is in practice
ot very helpful since there are no rules to predict the required
alue of z.

The Maxwell-model (red line), and especially its higher order
ccuracy variant (the Rayleigh model), represented by the dashed
lue line, follow the trend of the random packing curve much closer.
his is in agreement with one’s physical expectations, since both
odels are fully explicit, directly taking the spherical shape of the

articles into account, and do not rely upon the phase symmetry-
ssumption as does the LD-model.

Fig. 6 can be used to assess the differences between the highest-
rder accuracy solutions for the fcc-, bcc- and sc-arrangement
stablished by Cheng and Torquato (Eq. (18)) and the three-point
pproximation of Torquato (Eq. (19a)). As can be noted, the lat-
er (blue curves) approximates the highest-accuracy solution of
heng and Torquato (black curves) very well. Given the Torquato-
pproximation is much simpler to use, it offers a good compromise
etween accuracy and practical utility. The sc-case on the other

and produces a Deff-behaviour that is significantly different from
he fcc- and bcc-packing case, in full agreement with the fact that
he packing geometry of the fcc- and the bcc-case are very simi-
ar, whereas the sc-packing case contains much larger void spaces.
his can be witnessed from Fig. 2, and is also in agreement with the
togr. A 1218 (2011) 32–45

fact that the maximal packing density of the sc-case (εe,cp = 0.48)
strongly deviates from the bcc- and the fcc-case, for which respec-
tively εe,cp = 0.32 and εe,cp = 0.26.

Yet another observation that can be made from Fig. 6 is that the
random packing case displays a Deff-behaviour that lies somewhere
intermediate between the fcc-, bcc- and sc-case. This makes perfect
sense, since a random packing inevitably consists of a combination
of fcc-, bcc- and sc-like regions [14]. The random packing solution
lies closer to the fcc- and the bcc-case than to the sc-case. The lat-
ter is in full agreement with the fact that the sc-packing geometry
is much less stable and sc-regions therefore seldom form when
packing a bed.

In a more quantitative way, it can be concluded from Figs. 5 and 6
that the difference between the Maxwell-curve and the random
packing curve is everywhere less than 4%. Depending on the intra-
particle diffusion rate, the Maxwell-curve is even accurate to within
1% in the range of 0.1 < k′ < 5.2 for the case of Dpart/Dm = 0.5 (Fig. 6a)
and in the range of 1.6 < k′ < 30 for the case of Dpart/Dm = 0.1 (Fig. 6b,
upper limit value is not shown on graph but was verified ana-
lytically). Similar values are obtained for the other considered
Dpart/Dm-cases. In fact, the following general trend can be discerned
when comparing all considered cases: the smaller Dpart/Dm, the
broader the range of k′-values wherein the Maxwell-model approx-
imates the random packing geometry to within 1%. This implies
that for most relevant cases, the Maxwell-solution already pro-
vides an excellent approximation. Given the relative simplicity of
the Maxwell-solution this is a very fortunate situation.

Another observation that can be made from Fig. 5 is that the dif-
ference between Torquato’s approximate three-point solution and
the highest-order accuracy result of Cheng and Torquato (respec-
tively represented by the black and blue curves) is very small
(maximally 1% if εe = 0.4 and 1.4% if εe = 0.35) for the fcc- and the
bcc-case. The difference is significantly larger for the sc-case, but
this type of packing is anyhow not very relevant for real packed bed
columns.

The most important deviation between the different models
(thus reflecting the sensitivity to the exact geometry of the packing)
for chromatographic applications clearly occurs in the k′′ = 0-limit
(outer left hand side of the graphs), i.e., the case of a packing of
fully solid particles. This limiting case has however already been
discussed in Section 2.5 and Fig. 3.

4. Formulation of the EMT-expressions in terms of the
microscopic material and physicochemical parameters

To effectively use the EMT-expressions discussed in the previous
sections to calculate the value of the B-term constant and �eff, the
relation between the externally observed intra-particle diffusion
coefficient Dpart (appearing in all EMT-models via ˇ1 and ˛part) and
the microscopic material and physicochemical parameters needs
to be known as well.

4.1. Effect of the presence of a solid core

Zooming in on the microscopic details of the particle (Fig. 1b),
the first obvious material parameter that needs to be taken into
account when considering the general case wherein the particles
might contain a central solid core, is the relative core diameter �
(� = dcore/dpart) [44].

In this case, it is also important to distinguish between εpz and

εpart [10]. Whereas εpz is the fraction occupied by the non-retained
species and the mobile phase in the meso-porous zone (either full
particle or porous-shell), εpart represents the same fraction but now
expressed on a whole-particle basis. The latter hence accounts for
the fact that the solid core occupies a significant fraction of the par-
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icles that cannot be accessed by the mobile phase. Both quantities
re related by [44]:

part =
(

1 − �3
)

εpz (spheres) (38a)

part =
(

1 − �2
)

εpz (cylinders) (38b)

o properly represent the effect of the solid core, it is also important
o distinguish between Dpz and Dpart. With reference to Fig. 1b, Dpz

s the symbol we use for the diffusion coefficient experienced by the
pecies once they entered the meso-porous zone (entire particle in
ase of fully porous particle; shell layer in case of a porous-shell
article). On the other hand, Dpart is the externally observed intra-
article diffusion coefficient. For a fully porous particle, the whole
article consists of the same meso-porous zone, so that simply:

part = Dpz (fully porous particle only) (39)

or a porous-shell particle, however, an external observer experi-
nces an intra-particle diffusion coefficient lumping the diffusion
n the meso-porous zone (shell layer) with the 100% obstruction
ntroduced by the solid core.

In this case, the column can in fact be considered as a ternary
edium, filled with spheres containing a concentric shell of a mate-

ial with a different permeability than that of the central core. For
he case of thermal and electrical conductivity, Hashin and Shtrik-

an, could show that such concentrically coated spherical particles
an be represented by a uniform particle with an effective con-
uctivity (or permeability in the terminology of the present study)
iven by [19,31]:

eff,part = 〈P〉 − (P2 − P1)2�1�2

〈P〉 + (n − 1)P1
(40a)

ith

P〉 = �1P1 + �2P2 and 〈P〉 = �1P2 + �2P1 (40b)

nd

= 2 (cylinders) or n = 3 (spheres) (40c)

P2 = 0 for the presently considered case of a non-porous core.
oting further that there is no preferential solubility between phase
and 2 so that P1 = D1 = Dpz and Peff,part = Dpart, and also considering

hat �2 = �3 for spheres and �2 = �2 for cylinders (�1 = 1 − �2), Eq.
40) can be rewritten as:

part = 2
2 + �3

Dpz (spherical particle case) (41)

part = 1
1 + �2

Dpz (cylindrical pillar case) (42)

hen � turns to zero (no core), Eqs. (41) and (42) reduce to Eq.
39), as expected.

Eq. (40) is mathematically exact and generally valid for any value
f � and also for any type of particle or pillar arrangement (ordered
nd random packings) [19,31]. This hence also holds for Eqs. (41)
nd (42).

Since the EMT-expressions for B and �eff (via ˇ1) are based on
elative permeabilities rather than on diffusivities, it is convenient
o establish a relation between the relative permeability of the par-
icle (˛part) and that of the porous zone (˛pz). As shown in the SM,
his relation is given by:

= 2(1 − �3)
˛ (spherical particles) (43a)
part

2 + �3 pz

r

part = 1 − �2

1 + �2
˛pz (cylindrical pillars) (43b)
togr. A 1218 (2011) 32–45 41

For particles without solid core, � = 0, and Eqs. (43a) and (43b)
reduce to:

˛part = ˛pz (fully porous particles) (43c)

in full agreement with Eq. (39).

4.2. Expressions for the diffusion coefficient Dpz and the relative
permeability ˛pz of the porous zone

As can be noted from the above sections, the relative perme-
ability ˛pz of the meso-porous zone is the basic parameter that is
needed to calculate B. In the present contribution, two different
approaches to calculate the value of ˛pz are considered. These are
discussed in the two sections below.

4.2.1. Expressions based on the residence time weighted addition
of diffusion rates

The first approach is based on the assumption that the effective
diffusion in the meso-porous zone can be calculated by making
a residence time weighted addition of the diffusion experienced
by the analytes while moving through the meso-pores in the non-
retained state (during which D = �mpDm) and that experienced
while being retained on or in the stationary phase (during which
D = �sDs). This is the assumption that is traditionally made in litera-
ture [1,38], and corresponds to the assumption that the diffusion in
the mobile phase in the meso-pores and that in or on the stationary
phase occurs in parallel. As shown in the SM, this assumption leads
to the following expression for Dpz:

Dpz = εpz�mpDm + (1 − εpz)KA,pz�sDS

εpz + (1 − εpz)KA,pz
(44)

To the best of our knowledge, this expression has for the first time
been introduced by Knox [1] and Stout and De Stefano [2]. As shown
in the SM, Eq. (44) directly leads to:

˛pz = εpz�mp + (1 − εpz)KA,pz
�sDS

Dm
(45)

The reader will note that the right hand side of Eq. (45)
is identical to the expression for the ˝-factor introduced in
[10,24,35,38]. Similarly, the effective permeability of the mobile
zone (Ppz = Dm˛pz) that is obtained by multiplying both sides of Eq.
(45) with the molecular diffusion coefficient Dm is equivalent to
the expressions for ˝·Dm and De traditionally used in the recent
general rate model literature [23,24,38,44–46]. It is however clear
from the derivation leading to the establishment of Eqs. (S-27) and
(S-25) in the SM that both ˝ and De represent a permeability and
not a diffusivity.

In some recent literature [45], the stationary phase obstruction
factor (�s) has already been incorporated into the Ds-value that is
being used or reported. In the present study, it has been preferred
here to keep the �sDs-notation to emphasize the difference with
the Dpz-model established in Section 4.2.2.

Eqs. (44) and (45) can also be readily expressed in terms of the
retention factors k′ or k′′. The resulting expressions are given by
Eqs. (S-28) and (S-29) of the SM.

4.2.2. Expressions directly derived from the EMT
As already mentioned, Eq. (44) is directly based on the parallel-

zone assumption, wherein the meso-porous zone is viewed as a
parallel bundle of cylindrical meso-pores, albeit with a given tortu-

osity. However, the meso-porous zone is often also imagined as a
sintered packing of nano-spheres. In this case, the meso-porous
zone could be imagined as a ternary medium, consisting of the
mobile phase liquid, filling the meso-pores, the impermeable silica
particles, and a stationary phase layer covering the impermeable
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ilica. In this case, one can again use the Hashin–Shtrikman solu-
ion for ternary media already used in Section 4.1. Although the
epresentation as a packing of spheres or cylinders is for most meso-
orous materials perhaps only a very crude approximation (except
or those particles that really consist of an agglomeration of solid
ano-spheres), it nevertheless seems worthwhile to consider it and
tudy the difference with the pure parallel-zone model, which is
bviously also only an approximation of the reality.

To apply the Hashin–Shtrikman approach used in Section 4.1,
he meso-porous zone should be represented (see also part 1.2.2
f the SM) as a binary medium consisting of (i) the meso-pores
lled with mobile phase (occupying a fraction εpz and having a
ermeability P = Pm), and (ii) the “solid” zone composed of the solid
ilica and the stationary phase material (occupying a fraction 1 − εpz

nd having a permeability P = Ps). Subsequently, ˛pz can be defined
s the ratio of the permeability governing the two different zones.
onsidering then the spherical particle case, and using the simple
axwell-model (cf. Eq. (16)), we readily obtain:

pz = Ppz

Pm
= 1 + 2ˇ1(1 − εpz)

1 − ˇ1(1 − εpz)
(46)

ith

1 = ˛sol − 1
˛sol + 2

(47)

herein ˛sol is the relative permeability of the solid zone. Sub-
equently depicting this solid zone as a solid impermeable core
ith a uniform coating of stationary phase material with diffusion

oefficient Ds, and defining �sol as:

sol = dsilica/(dsilica + 2ıs) (48a)

r as

sol = 3
√

Vsilica/(Vsilica + Vs) (48b)

e can write in analogy with Eq. (43) that

sol = 2(1 − �3
sol)

2 + �3
sol

˛s (49)

herein ˛s is the relative permeability of the pure stationary phase
aterial (i.e., assuming there is no obstruction factor), which in

nalogy with Eq. (11), can be calculated as:

s = KA,pzDs

Dm
(50)

As shown in the SM, the expression for ˛pz can readily be trans-
ormed into an expression for the Dpz, yielding:

pz = 1 + 2ˇ1(1 − εpz)
1 − ˇ1(1 − εpz)

· Dm

εpz + (1 − εpz)KA,pz
(51)

f desired, Eqs. (46) and (51) can also be readily expressed in terms
f the retention factors k′ or k′′. The resulting expressions are given
y Eqs. (S-32) and (S-33) of the SM.

In case a packing of cylindrical pillars would be a more appro-
riate representation of the reality, the factors 2 appearing in Eq.
46) should be turned into a factor 1 (in analogy with Eq. (29)) and
he power of 1/3 and 3 appearing in Eqs. (48b) and (49) should be
eplaced by a power of 1/2 and 2. It is also possible to use some
f the more elaborate EMT-expressions that can be found in litera-
ure or in Section 2.1 to replace the right hand side of Eq. (46). One
articularly interesting solution would be the use of Eq. (19a), in
ombination with the 	2-values that prevail in packings of partially

verlapping spheres [47], as this could in some cases constitute
closer representation of the real geometry of the meso-porous

pace.
Fig. 7 compares the evolution of Dpz/Dm with KA,pz predicted by

he RTW-model (Eq. (44)) and that predicted by the EMT-approach
�mp = 0.8 and �s = 0.5 for case (a) and �mp = 0.7 and �s = 0.7 for case (b). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

(Eq. (46)). As can be noted, it is always possible to select a value
for �mp and �s such that the RTW-model yields a curve that runs
close to the Maxwell-based prediction (see figure caption for �mp

and �s-values). The difference appears to be smaller than the typical
experimental error margin, so that it will be difficult to differentiate
between both models from peak parking measurement alone.

It should also be noted that, as opposed to the RTW-based model
for Dpz (Eq. (44)), the EMT-based model for Dpz (Eq. (51)) no longer
requires estimation of the values of �mp and �s, as these come “for
free” with the EMT-approach, i.e., the effect of the obstruction is
automatically incorporated in the obtained value for Dpz.

5. Reverse calculation: determining Dpart, Dpz, �mp and
�sDs/Dm from a measured set of B- or �eff-values

Apart from modelling and predicting the B-term constant of the
van Deemter-curve, the EMT-expressions established in Section 2
should also allow to make the reverse calculation, i.e., determining
the value of Dpz (and Dpart) and/or the value of the microscopic
intra-particle diffusion parameters �mp, �Ds/Dm and Ds starting
from a measurement of Deff or from an experimentally determined
B-term constant value.

In this type of reverse calculation, the left hand side of Eqs.
(16)–(20) is known and one is interested in finding the value of ˛part.
Although Eqs. (16)–(20) can of course always be solved numerically
for ˛part, it is much more convenient if ˛part could be calculated

via an explicit analytical expression. Since they are respectively
limited to a 1st- and 2nd-order dependency on ˛part, such an ana-
lytical expression must exist for the Maxwell-based (Eq. (16)) and
the Torquato-based expression (Eq. (19a)).
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Starting from the measured value of either B or �eff, and first
onsidering the Maxwell-based expression for spheres (Eq. (16))
nd cylinders (Eq. (29)), it is relatively straightforward to isolate ˇ1
nd subsequently use the link between B and �eff given in Eq. (4)
o arrive at:

1 = 1
1 − εe

· BεT − 2
BεT + 4

(spheres) or

1 = 1
1 − εe

· BεT − 2
BεT + 2

(cylinders) (52)

esiring a higher accuracy (especially needed if the measurement is
ituated in the small k′ region and or non-porous particle case), and
witching to the Torquato-based expression (Eq. (19a) for spheres),
t is somewhat more cumbersome to isolate ˇ1. Nevertheless, since
he expression is only quadratic in ˇ1, a directly applicable analyt-
cal expression can still be obtained:

1 =
(εe − 1)(4 + BεT) +

√
(4 + BεT)2(1 − εe)2 + 8εe
2(BεT − 2)2

4εe
2(BεT − 2)
(spheres)

(53a)

The negative root of the quadratic equation can be discarded
ince this always produces a value that lies outside the range
0.5 ≤ ˇ1 ≤ 1. Inserting such a value into Eq. (54) established fur-

her on would yield a negative value for ˛part, which is of course
hysically invalid.

Similarly, we can also transform the cylinder-variant of the
orquato-based expression (Eq. (31)). This then yields:

1 =
(εe − 1)(2 + BεT) +

√
(2 + BεT)2(1 − εe)2 + 4εe
2(BεT − 2)2

2εe
2(BεT − 2)
(cylinders)

(53b)

nce ˇ1 is known, it is straightforward to calculate the value for
he relative particle permeability ˛part by inverting either Eq. (13)
r (28), respectively yielding:

part = 1 + 2ˇ1

1 − ˇ1
(spheres) or ˛part = 1 + ˇ1

1 − ˇ1
(cylinders) (54)

ubsequently using the relation between ˛part and Dpart (via Eq.
12)), it is found that:

Dpart

Dm
= 1 − εe

εe · k′′ ˛part = 1 − εe

(1 + k′)εT − εe
˛part (55)

from which it is straightforward to obtain Dpz via the gener-
lly valid Eq. (41) (spherical particle case) or Eq. (42) (cylindrical
illar case), or by simply recognizing that Dpz = Dpart in the case of
ully porous particles. From the known value of Dpz, the expressions
iven in Section 4.2 and in Sections 1.2.1 and 1.2.1 of the SM can
ubsequently be used to determine the microscopic intra-particle
iffusion parameters �mp, �sDs/Dm and Ds.

To compare the accuracy with which the value of Dpart (or Dpz)
an be determined from a set of peak parking or B-term constant
easurements, Fig. 8 compares the Dpart-values obtained when

sing the Maxwell-model starting from a set of B-term constants
enerated using the random packing variant of the Torquato-model
Eq. (18)). These values are compared with the values for Dpart

btained by starting from the same B-term constant value but by
sing the RTW-model. To simplify the calculation, it was assumed
hat Dpart is independent of the retention factor, but it can be
erified that this simplification does not take away from the gen-
rality of the obtained conclusions. As can be noted from Fig. 8, the

axwell-model (Eq. (52)) produces Dpart-values that approximate

he true Dpart-values (represented by the horizontal black line). This
mplies that the relatively simple expression given in Eq. (52) is in

ost cases sufficiently accurate to reliably estimate the Dpart-value
rom a series of B-term constant or �eff-measurements (except for
part

the flat horizontal line). Data are plotted versus the phase retention factor k′ . (a)
Dpart/Dm = 0.5 and (b) Dpart/Dm = 0.1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

the practically irrelevant cases with k′′ < 1). In agreement with the
observations already made in [5], the RTW-based predictions devi-
ate much more strongly, despite the apparent good fit that can be
obtained in the small Dpz-case (see Fig. 4b). The RTW-model clearly
induces a false monotonous trend in the observed Dpart-values, as
these appear to decrease with increasing retention, whereas the
true value used to produce the B-term constant data was assumed
to be independent of k′ (horizontal black line data).

6. Conclusions

A variety of Effective Medium Theory (EMT) expressions exist
in the literature on the effective electrical and thermal conductiv-
ity of packings of spheres and cylinders. Using the permeability
analogue of the diffusion and partitioning processes occurring in
a chromatographic column, these expressions can be transformed
into expressions predicting the B-term band broadening in a very
accurate way. These predictions are much more accurate than those
obtained with the traditionally employed residence time weighted
(RTW) expressions of the type shown in Eqs. (26) and (27), because
these are based on the (erroneous) assumption that the concentra-
tion gradients inside and outside the particles are independent of
each other. As a consequence, the RTW-expressions even violate

one of the basic rules of the EMT by breaking through the upper
and lower limits for the effective diffusion.

Within the broad family of EMT-models, explicit as well as
implicit models can be distinguished. The former yield much more
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ccurate predictions of the B-term band broadening than the lat-
er. Implicit expressions such as the Landauer–Davis expression
ack the microscopic information about the bed geometry, and
herefore only hold over a narrow range of retention coefficients,
specially when assuming that the coordination number z equals
. The Landauer–Davis expression completely fails when approach-

ng the non-porous particle packing case (i.e., for k′ and k′′ close to
ero). The lack of a method suggesting good a priori values for z fur-
hermore makes the Landauer–Davis model inappropriate for use
n the field of chromatography.

Subsequently considering the class of explicit models, a wide
ariety of models with varying degrees of accuracy exist. For per-
ectly ordered sphere packings, expression are available that are
ven accurate up to 9th order in εe. Very fortunately, liquid chro-
atography is performed under conditions where the permeability

f the particles is of the same order of magnitude as the per-
eability of the surrounding medium (mobile phase filling up

he interstitial void). Hence, the effective diffusivity and perme-
bility is only weakly sensitive to the exact arrangement of the
article and void zone. This also explains why the most simple
f all explicit EMT-models (i.e., the Maxwell-based model) con-
titutes a very good approximation (only a few % deviation from
he highest accuracy solutions) over most part of the usual reten-
ion range, despite the dilute suspension assumption it is based
n. An exception occurs for very small k′ (approaching the imper-
eable particle limit) and very large values of k′, where higher

rder expressions such as the Cheng–Torquato expression should
e used.

The difference between the Maxwell-model and the highly accu-
ate random packing model is everywhere less than 4%. Depending
n the intra-particle diffusion rate, the Maxwell-model is even
ccurate to within 1% in the range of 0.1 < k′ < 5.2 for the case
f Dpart/Dm = 0.5 and in the range of 1.6 < k′ < 30 for the case of
part/Dm = 0.1.

Using the fully exact Hashin–Shtrikman theory for coated
pheres and cylinders, the explicit EMT-expressions can be
xtended to include the effect of the presence of a solid core, as
ncountered in porous-shell particles. According to this theory, the
ndividual porous-shell particles can still be represented as a uni-
orm zone, despite the presence of a large solid core. The effect of
he latter can namely simply be expressed using an intra-particle
bstruction factor �part, given by �part = 2/(2 + �3) for spherical par-
icles and �part = 1/(1 + �3) for cylinders.

The same Hashin–Shtrikman theory can also be used to establish
n alternative expression for the diffusion coefficient in the meso-
orous zone Dpz. Traditionally, it is assumed that the diffusion in the
eso-pores (unretained state) and in the stationary phase (retained

tate) occurs in parallel. This leads to a residence time weighted
RTW) expression wherein each independent diffusion process has
ts own obstruction factor. Using the Hashin–Shtrikman theory, an
lternative expression for Dpz can be established that displays a
ery similar dependency on k′ as the RTW-model, but does not rely
n the use of some (a priori unknown) obstruction factors. It is fur-
hermore also guaranteed to obey the physical diffusion bounds of
he EMT.

The Maxwell- and the Torquato-based EMT-expressions can also
e reformulated (see Section 5) into an analytical expression that
an be used to derive the value of the intra-particle diffusion coef-
cient (Dpart) from a peak parking measurement of �eff or from
n experimental value of the B-term constant. Using these expres-
ions, it could be demonstrated that the traditionally employed

TW-model yields Dpart-values that display an erroneous reten-
ion factor dependency (false apparent monotonous decrease of
part with increased retention), even in cases where the RTW-
odel appears to be able to produce a close fit to the peak parking
easurements (see e.g., the Dpart/Dm = 0.1-case in Fig. 4b).
togr. A 1218 (2011) 32–45

Symbols

a1, a2 coefficients in Eq. (19b), values see Table 1
A see Eq. (21b)
b1, b2, b3, . . . coefficients in Eq. (18b), values see Table 1
B B-term constant, see Eq. (4)
Cm,eq equilibrium concentration of analytes in the mobile phase

[mol/m3]
d diameter [m]
D diffusion coefficient [m2/s]
D1 diffusion coefficient in zone 1 [m2/s]
Deff effective diffusion coefficient [m2/s]
Deff,Maxwell effective diffusion coefficient calculated with Maxwell

expression [m2/s]
Dm molecular diffusion coefficient [m2/s]
Dpart intra-particle diffusion coefficient [m2/s]
Dpz diffusion coefficient in porous zone [m2/s]
Ds diffusion coefficient in the stationary phase [m2/s]
F(�) hindrance factor
hB dimensionless B-term plate height contribution

(=HB/dpart)
HB B-term plate height contribution [m]
k′ phase retention factor
k′′ zone retention factor
k′′

0 zone retention factor of an unretained component
K equilibrium distribution constant, see Eq. (8)
mpart,eq mass of analyte present in a particle at equilibrium [mol]
n dimension, see Eq. (40c)
P permeability [m2/s]
〈P〉 see Eq. (40b) [m2/s]
〈P〉 see Eq. (40b) [m2/s]
S solubility
t0 residence time of an unretained marker [s]
u0 velocity of an unretained component [m/s]
V volume [m3]
z coordination number as occurring in Landauer–Davis

models

Greek symbols
˛ permeability ratio, see Eq. (11)
ˇ1, ˇ2, ˇ3, . . . see Eq. (18c)
ı Hashin-fitting factor in Eq. (20)
ıs thickness of the stationary phase layer [m]
εcp porosity at the close packing limit
εe external porosity
εpart particle based porosity, see Eq. (38)
εpz porosity of the porous zone
εT total porosity (εT = εe + (1 − εe)εpart)
� volumetric fraction
�e obstruction factor in the RTW-model
�eff effective obstruction factor
�mp meso-pore obstruction factor
�np obstruction factor of a packing packed with non-porous

particles
�part intra-particle obstruction factor
�eff,RTW effective obstruction factor according to the RTW-model
�s stationary phase obstruction factor
� ratio of the molecular diameter to the meso-pore diame-

ter
� see Eq. (18b)

�0 reduced velocity of an unretained component

(=u0dpart/Dm)
� relative core diameter (� = dcore/dpart)
� conductivity (ex. thermal) [W/m K]
� intra-particle tortuosity
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2 Torquato’s three-point factor

ubscripts
phase 1
phase 2

,pz relating to analyte A in porous zone
rit critical conditions wherein permeability and diffusivity in

particle and mobile zone are identical
ore core
ff effective

interstitial zone (=mobile zone)
mobile zone

art particle-based
z porous zone-based

stationary phase
ol solid zone

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.chroma.2010.10.087.
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